Ziel des Projektes ist es zu klären, wie Trainingsdaten von mehreren Stationen, aus mehreren Werken oder auch mehreren Unternehmen genutzt werden können, ohne dass Beteiligte sensible Unternehmensdaten herausgeben müssen.
„Wir untersuchen, wie möglichst vielseitige Trainingsdaten von mehreren Standorten genutzt werden können, um mithilfe von Algorithmen im Bereich der Künstlichen Intelligenz (KI) robustere und effizientere Lösungen zu entwickeln als mit Daten von lediglich einem Roboter“, erklärt Jonathan Auberle vom Institut für Fördertechnik und Logistiksysteme (IFL) des KIT.
Dabei werden an mehreren Kommissionierstationen Artikel von autonomen Robotern mittels Greifen und Umsetzen weiterverarbeitet. An den verschiedenen Stationen werden die Roboter mit ganz unterschiedlichen Artikeln trainiert. Am Ende sollen sie in der Lage sein, auch Artikel anderer Stationen zu greifen, die sie vorher noch nicht kennengelernt haben. „Durch den Ansatz des verteilten Lernens, auch Federated Learning genannt, schaffen wir den Spagat zwischen Datenvielfalt und Datensicherheit im industriellen Umfeld“, erklärt Auberle.
Federated Learning zum Schutz sensibler Daten
„Bisher wurde Federated Learning überwiegend im medizinischen Sektor zur Bildanalyse eingesetzt, wo der Schutz von Patientendaten natürlich einen besonders hohen Stellenwert hat“, so Auberle weiter. Folglich gebe es für das Training des künstlichen neuronalen Netzes keinen Austausch von Trainingsdaten wie Bildern oder Greifpunkten, sondern es würden lediglich die lokalen Gewichte des Neuronalen Netzes, also Teile von gespeichertem Wissen, zu einem zentralen Server übertragen. „Dort werden die Gewichte von allen Stationen gesammelt und mithilfe verschiedener Kriterien optimiert. Anschließend wird die verbesserte Version zurück auf die lokalen Stationen gespielt, und der Prozess wiederholt sich.“
Während des Projektes sollen für das Training der Roboter insgesamt vier autonome Kommissionierstationen aufgebaut werden: zwei am Institut für Fördertechnik und Logistiksysteme des KIT sowie zwei bei Festo SE in Esslingen am Neckar. Weitere Partner sind das Institut für Angewandte Informatik und Formale Beschreibungsverfahren (AIFB) des KIT, Darwin AI und die University of Waterloo.